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The ultimate aim of this project is to describe proteins w.r.t. their functions. Re-
call that proteins usually form complexes, either stable or transient, to perform their
jobs ([1]). For example, nearly ten thousands of protein complexes are registered
with the Protein Quaternary Structure (PQS) database (http://pqs.ebi.ac.uk/pqs-
doc.shtml). That is, protein-protein interactions are key determinants of protein
function. And we will try to describe proteins w.r.t. their partners, with which
they form complexes.

In this project we consider, for example, the following questions:
- Are proteins uniquely determined by the protein-protein interaction map of

an organism?
- Are there any kind of symmetry among protein-protein interactions?

We will construct a mathematical foundation to deal with them.
Moreover the structure-function paradigm of proteins implies a new kind of func-

tional language, whose semantics is given by shapes. And we expect a “Protein
Description Language” based on it to express specification of proteins, i.e., the
protein-protein interaction map.

Date: August 31, 2003.
(rev.) October 31, 2003.

1



2 N. MORIKAWA

U

D

D

U

D

U

・

・

・

Folding

(Integration)

Coding

(Differentiation)

Figure 1. Analysis of hetero numbers.
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Figure 2. Unit cube and its drawings in R
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1. A quick introduction to Hetero number theory

We use rulers to measure length of objects and weights in scales for weighing
objects. The set of “hetero numbers” is a new system of units for measuring shape
of objects such as proteins. The features of the system are the correspondences
between

(1) genetic code and the second derivative,
(2) protein folding and integration,
(3) protein-protein interaction and addition

(Fig.1). Moreover the system gives an example of “additively higher dimensional”
extension of natural numbers.

1.1. Basic idea. We explain the basic idea of “hetero numbers” in the case of
dimension two. Consider a unit cube in the three-dimensional Euclidean space
R

3 whose vertices are, say, given by v1 = (0, 0, 0), vx = (1, 0, 0), vy = (0, 1, 0),
vxy = (1, 1, 0), vz = (0, 0, 1), vxz = (1, 0, 1), vyz = (0, 1, 1) and vxyz = (1, 1, 1). And
draw lines v1vxy , v1vyz and v1vxz (Fig.2(a)).

Then each of the three upper faces is divided into two slant triangle tiles by
the lines. For example, triangles v1vxvxy and v1vyvxy for the face v1vxvxyvy. By
projecting the faces into the hypersurface x + y + z = 0, we obtain a division of a
hexagon by six triangle tiles (Fig.2(b)).

Piling up these unit cubes in the direction from vxyz to v1, we obtain a drawing
made up of the lines (Fig.2 (c) and (d)). Note that its peaks uniquely determine
the drawings. For example, the drawing of Fig.2(c) is determined by (0, 0, 0) and
Fig.2(d) by its three peaks (1, 0, 0), (0, 1, 0) and (0, 0, 1). We denote a set of peaks



RESEARCH PROJECT: TOWARD GALOIS THEORY OF PROTEIN-LIKE OBJECTS 3

(a) f0 (b) f=f1⊕f2⊕f3

(3,2,0)

(0,1,2)
(3,0,2)

(2,1,1)

(2,0,3)

V2

V1

V3

Figure 3. Affine hetero numbers
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Figure 4. Cover of peaks

by a polynomial, where a term xlymzn corresponds to a peak (l,m, n) ∈ Z
3. That

is, Fig.2(c) is determined by 1 = x0y0z0 and Fig.2(d) by x + y + z.
What concerns us is the case when a drawing gives closed orbits of tiles. For

example, a drawing determined by a polynomial

f0 = x3y2 + x3z2 + x2z3 + yz2 + x2yz

defines a closed orbit (Fig.3(a)). We call the set of all closed orbits two-dimensional
affine hetero numbers and denote it by AHN2.

An affine hetero number is characterized by its “cover” (the least upper bound
of its peaks). For example, the cover of f0 is x + z (Fig.4(a)). Suppose that a set
of peaks are given and consider all slant triangle tiles of the drawing determined
by them. If these tiles are either under or above the cover as in Fig.4(a), the peaks
define an affine number.

On the other hand, if there exists a tile which intersects the cover as in Fig.4(c),
the peaks do not define any affine numbers. For example, if we remove a term
x3z2 from f0, they define no longer any affine numbers (Fig.4(b)). For detailed
discussion, see [3].

1.2. Differential Geometry. Orbits are uniquely determined by the gradient of
its slant tiles, i.e., up (U) and down (D). Consider again the closed orbit defined
by f0 (Fig.3(a)), which consists of a chain of twenty-six triangle tiles. Moving
clockwise from the tile (3, 2, 0)(3, 2, 1)(4, 2, 1), gradients along the orbit are given
by

D − U − U −D − D − U − D − U − · · · − D − U.
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Figure 5. 1-dim. affine hetero numbers

The string of two letters, D and U , gives a “genetic coding” of the shape covered
by the orbit.

1.3. Heterological Algebra. Removing a cube at the peak (2, 1, 1), we obtain
another drawing determined by

f = x3y2 + x3yz + x3z2 + x2z3 + yz2 + x2y2z.

It defines three closed orbits V 1, V 2 and V 3 (Fig.3(b)) determined by

f1 = x3y2 + x3yz + x2y2z,

f2 = x3yz + x3z2 + x2yz2,

f3 = x2z3 + yz2 + x2y2z.

We denote the relation among f , f1, f2 and f3 as addition, i.e.,

f = f1 ⊕ f2 ⊕ f3.

which is the “additive” prime factoring of the affine hetero number f .
By putting a cube on the drawing, f fuses into a single orbit f0, i.e.,

f0 = (f1 ⊕ f2 ⊕ f3) ∗ x2yz,

which defines action of terms on affine hetero numbers.

1.4. Examples.

1.4.1. Natural numbers. A natural number gives an example of one-dimensional
affine hetero numbers. We define an embedding of N into AHN1 by

k �→ xk + yk

(Fig.5(b)). Then we have

(xk + yk) ∗ (
∑

0<i<k

xiyk−i−1) = ⊕0<j≤k(xjyk−j + xj−1yk−j+1).

The left hand side of the equation corresponds to a natural number “k” and the
right hand side corresponds to addition “1 +1 + · · ·+ 1 (k times )” (Fig.5(c)). The
genetic code of “k” is

D − D − · · · − D − U − U − · · · − U(k Ds followed by k Us).

On the other hand, the genetic code of “1 + 1 + · · · + 1(k times )” is

D − U − D − U − · · · − D − U(k repetitions of D − U− ).

We can also embed N into higher dimensional affine hetero numbers similarly.



RESEARCH PROJECT: TOWARD GALOIS THEORY OF PROTEIN-LIKE OBJECTS 5

(a)/(b) (c) 1 (d) x+y+z+w

x

y

z

w

Figure 6. Unit cube and its drawings in R
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Figure 7. Rhombic dodecahedron

1.4.2. Rhombic dodecahedron. Next we consider three-dimensional affine hetero num-
bers. Note that a unit cube in R

4 is projected onto a rhombic dodecahedron in R
3

by a mapping defined by (1, 0, 0, 0) �→ (1, 0, 0), (0, 1, 0, 0) �→ (0, 1, 0), (0, 0, 1, 0) �→
(0, 0, 1) and (0, 0, 0, 1) �→ (−1,−1,−1).

Consider a unit cube in the four-dimensional Euclidean space R
4 whose vertices

are, say, given by v1 = (0, 0, 0, 0), vx = (1, 0, 0, 0), vy = (0, 1, 0, 0), vz = (0, 0, 1, 0),
vw = (0, 0, 0, 1), vxy = (1, 1, 0, 0), vxz = (1, 0, 1, 0), · · · , vxyzw = (1, 1, 1, 1).

Then each of the four upper faces, that is, the faces specified by x = 0, y = 0,
z = 0 or w = 0, is divided into six tetrahedron tiles (Fig.6(a)). For example, six
tetrahedrons v1vxvxyvxyz , v1vxvxzvxyz , v1vyvxyvxyz , v1vyvyzvxyz , v1vzvyzvxzy and
v1vzvxzvxyz for the face specified by z = 0 (divided by the six white triangle walls
in Fig.6(a)). And “up (U)” (resp. “down (D)” ) at the tetrahedrons corresponds
to the direction from vxyz to v1 (resp. from v1 to vxyz). In particular, by projecting
the faces into the hypersurface x+ y + z +w = 0, we obtain a division of a rhombic
dodecahedron by twenty-four tetrahedron tiles (Fig.6(b)).

Piling up unit cubes in the direction from vxyzw to v1, we obtain a drawing made
up of the chains of tetrahedrons (Fig.6 (c) and (d)). Note that tetrahedrons are
connected only in the direction of U or D. Fig.6(c) is determined by a polynomial
1 and Fig.6(d) by x + y + z + w. In some drawings, we obtain a decomposition of
a rhombic dodecahedron into chains of tetrahedron tiles (Fig.7).

The chain of tetrahedrons satisfies the following conditions:
(1) Each tetrahedron consists of four short edges and two long edges, where the

ratio of the length is
√

3/2.
(2) Tetrahedrons are connected via long edges and rotate around the edges.
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Any shape represented by a polynomial is obtained by folding some chains of ade-
quate length according to their “U/D” codes and holding them together.

Fig.7 corresponds to the following equations:
(a) f = g0 ⊕ g1 ⊕ g2 ⊕ g3

(b) f ∗ xz = g10 ⊕ g11 ⊕ g12,
(c) f ∗ (xz + yz) = g20 ⊕ g21,
(d) f ∗ (xz + yz + wz) = g30,

where f = xyz +xyw +xzw + yzw, g0 = xyz +xyw +xzw, g1 = xyz +xyw + yzw,
g2 = xyz + xzw + yzw, g3 = xyw + xzw + yzw g10 = xyw + yzw + xz, g11 =
xyz+xyw+yzw, g12 = xyw+xzw+yzw, g20 = xyw+yzw+xz, g21 = xyz+xzw+yw
and g30 = xyw + xz + yz + wz.

The gradients of tiles along the orbit of g30 is

U − D − D − U − D − U − U − D

− U − D − D − U −D − U − U − D

− U − D − D − U −D − U − U − D,

which gives the genetic code of a rhombic dodecahedron (Fig.1).

1.4.3. DNA. An affine hetero number is defined by a single polynomial, that is ,
“affine”. On the other hand, a DNA molecule is approximated by patching affine
orbits together as in the case of “manifold”. The correspondence between a DNA
and a chain of tetrahedron tiles is given by

one nucleotide ⇐⇒ one tetrahedron tile.

Using the approximation, we obtain a polynomial representation of helix, which
has twelve tiles per turn (Fig.8(b)):

p(helix) = {(1 + x2y/w, [0, 7]),

(xy + x2z2 + x2y/w, [2, 13]),

(x2yz + x2z2 + x4yz2/w, [8, 19]),

(x3yz2 + x4z4 + x4yz2/w, [14, 25]),

(x4yz3 + x4z4 + x6yz4/w, [20, 29])},
where (f, [l, m]) means that the part from the l-th tile to the m-th tile is represented
by f .

The genetic code of the helix (from top to bottom) is

D − D − D − D − U − U − D − D − D − D

− U − U − D − D − D − D − U − U − D −D

− D − D − U − U − D − D − D − D − U − U.

Two copies of the helix form a DNA-like double-helix as shown in Fig.8(a). In the
figures arrows indicate the direction of “down (D)”.

1.4.4. Protein. A protein molecule is also approximated by a set of affine orbits.
The correspondence between a protein and a chain of tetrahedron tiles is given by

one amino-acid ⇐⇒ three tetrahedron tiles.

Note that the coding is consistent with the actual genetic code, where a single
amino-acid is coded by three nucleotides (codon). Therefore the actual genetic
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Figure 8. DNA

code of a protein is encoded into a string of two letters, U and D. In particular,
the twenty kinds of amino-acids are encoded into eight kinds of letters. (In the
following, for the convenience of the program used, a bond between amino-acids is
corresponded to three tiles.)

Using the approximation, we obtain a polynomial representation of the chain A
of 2HIU(Insulin, human):

p(2HIU-A) = {(x/w + 1/(yz2) + 1/(xz2), [0, 12]),

(1/(zw) + 1/(yz2) + 1/(xz2), [5, 16]),

(1/(zw) + 1/(xyz3) + 1/(x2z3) + y/(xzw), [11, 27]),

(1/(x2zw) + 1/(xyz3) + 1/(x2z3) + yz/w2, [14, 40]),

(y2z/(xw) + y/w + yz/w2, [34, 43]),

(y2z/(xw) + 1/w2 + z/w3, [38, 49]),

(z/(xw4) + 1/w2 + z/(yw4), [44, 55]),

(z/(xw4) + 1/(y2w4), [50, 59])}.
(‘2HIU’ is the ID used to retrieve data from the Protein Data Bank (PDB).)

The “D/U code” of the protein is

D − U −D − U − U − U − U − D − D − U

− U − D − D − U − D − U − U − U − U − D

−D − U − U − D − D − D − D − U − U − U

−D − D −D − D −D − D − U − U − D − D

− U − D − U − U − U − U − D − D − U − U

− U − U − D − D − U − U − U − U −D − D.
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Figure 9. Protein(2HIU chain A). The figure (b) is prepared us-
ing WebLab Viewer (Molecular Simulations Inc.).

2. Galois theory of hetero numbers

2.1. Algebraic equations of petals. Let’s consider the closed orbit V A defined
by a polynomial p(V A) = xy+xz+yz and closed orbits Ai (0 ≤ i < 7) surrounding
it (Fig.10(a)). We call these surrounding loops the petals of V A. Among V A and its
petals, there are eight algebraic equations (and their combinations). For example,
Fig.11 illustrates the following equations:

(a) (p(V A) ⊕ (⊕1≤i≤6p(Ai))) ∗ 1 = p(A11) ⊕ p(A12) ⊕ p(A13),
(b) (p(V A) ⊕ (⊕1≤i≤6p(Ai))) ∗ (x + y + z) = p(A21),
(c) (p(V A) ⊕ p(A5) ⊕ p(A6)) ∗ y = p(A31),
(d) (p(V A) ⊕ p(A4) ⊕ p(A5)) ∗ (−yz) = p(A41),
(e) (p(V A) ⊕ (⊕1≤i≤6p(Ai))) ∗ (−xy − yz − xz) = p(A51) ⊕ p(A52) ⊕ p(A53)

where p(Ai) denotes the polynomial representation of the closed orbit Ai.
This observation leads us to expect the following correspondence (modulo some

equivalence relation).
Problem 1.

An affine hetero number
?⇔ A set of equations among the orbit and its petals.

That is, given a set of equations, we consider whether there exist any affine hetero
numbers that satisfy them or not. Note that, to consider the problem, we need
some language in which we express and solve the equations.

2.2. Symmetry group of petals. Because of the symmetry of V A, the equations
are invariant under some permutation of the petals. In this case, they are invariant
under any rotations and any reflections among Ai (0 ≤ i < 7).

Next consider a less symmetric orbit, i.e., the closed orbit V B defined by p(V B) =
x2y2z + x2z3 + yz2 and its petals Bi (0 ≤ i < 8) (Fig.10(b)). Then we have eleven



RESEARCH PROJECT: TOWARD GALOIS THEORY OF PROTEIN-LIKE OBJECTS 9

(b) VB

B1

B4

B3

B2

B7

B5

B6A1

A3

A2

A6

A4

A5

(a) VA

Figure 10. Affine hetero number and its petals
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Figure 11. Algebraic equations of V A

equations (and their combinations) among them. For example, Fig.12 illustrates
the following equations:

(a) (p(V B)⊕(⊕1≤i≤7p(Bi)))∗(xyz+xz2) = p(B11)⊕p(B12)⊕p(B13)⊕p(B14),
(b) (p(V B) ⊕ (⊕1≤i≤7p(Bi))) ∗ (x2yz + xy2z + x2z2 + xz3) = p(B21) ⊕ p(B22),
(c) (p(V B) ⊕ p(B6) ⊕ p(B7)) ∗ xy2z = p(B31),
(d) (p(V B) ⊕ p(B5) ⊕ p(B6)) ∗ (−yz2 + xyz2) = p(B41),
(e) (p(V B) ⊕ (⊕1≤i≤7p(Bi))) ∗ (−x2y2z − x2z3 − yz2) = p(B51) ⊕ p(B52).
Now they are not invariant under any rotations among Bi (0 ≤ i < 8). This ob-

servation leads us to expect the following correspondence (modulo some equivalence
relation).

Problem 2.

Symmetry of an affine hetero number
?⇔ A set of permutations of its petals.

And we regard the set of permutations as the “Galois group” of an affine hetero
number.

2.3. Shape Description Language. If we have a programming language in which
we can express and solve the equations efficiently, it would facilitate calculation
of hetero numbers very much. Then a set of equations will become a computer
program. And its solution is nothing but the “semantics” of the program.

Note that algebraic equations can be regarded as “syntax of terms” of the lan-
guage. For example, (p(V A)⊕p(A5)⊕p(A6))∗y = p(A31) (Fig.11(c)) implies that



10 N. MORIKAWA
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Figure 12. Algebraic equations of V B

A31 is a concatenation of V A, A5 and A6, which gives a two-dimensional extension
of concatenation of lists such as “cons” in LISP.

This observation motivates the following.
Problem 3.

Design an higher dimensional extension of LISP (or λ-calculus)

to describe and manipulate hetero numbers.

3. Study plan

Purpose:
- To define the set of equations which determines an affine hetero number

uniquely and establish the way to solve it.
- To give a specification of an affine hetero number using the symmetry of the

equations which define it.
Strategy:
- By imitating sheaf theory (topos theory) as far as possible to clarify the

difference between homology and “heterology”. We define an embedding ∆
of natural numbers into affine hetero numbers. Then the category of affine
hetero numbers can be regarded as sheafs on {∆(k) : k ∈ N} ⊂ AHNm. (Cf.
The category BG of continuous G-set. ([2]) )

- By imitating λ-calculus (or LISP) as far as possible to make the implemen-
tation of the language readily. As explained above. we regard addition as a
higher dimensional extension of concatenation of lists.
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